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Abstract

This paper presents a distributed Model Predictive Control (MPC) approach for large-scale, multi-zone
building energy systems based on nonlinear Modelica controller models. The method considers both thermal
and hydraulic coupling among different building zones. The iterative and parallel distributed optimization
approach builds upon an uncooperative approach for thermal coupling using the Nash equilibrium approach
and a cooperative approach for the hydraulic coupling using the Alternating Direction Method of Multi-
pliers (ADMM). Apart from thermal coupling through walls, the modeling takes thermal coupling through
doors into account using a data-driven approach, which calculates the inter-zone air exchanges based on
temperature differences between door-coupled zones. The hydraulic coupling enables consideration of in-
teractions between the zones introduced by a shared, central Heating, Ventilation and Air Conditioning
(HVAC) system. The distributed MPC framework is structured in an easy-scalable, plug-n-play composi-
tion, where local systems are automatically assigned to the global coordination scheme. The distributed
MPC method is applied to a simulative nonlinear case study, consisting of a detailed six-room-building Mod-
elica model considering both thermal and hydraulic interactions. The benefits of the proposed approach
are demonstrated and compared against centralized and decentralized control concepts in terms of energy
consumption, discomfort and computation time.
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Nomenclature

Abbrevations
ADMM Alternating Direction Method of Multipliers
AHU Air Handling Unit
BLT Block-lower Triangular
CCA Concrete Core Activation
COP Coefficient of Performance
FMI Functional Mockup Interface
HVAC Heating, Ventilation and Air Conditioning
illum Illuminance
KPI Key Performance Indicator
MAE Mean Absolute Error
MPC Model Predictive Control
NLP Nonlinear Programming
PID Proportional-Integrative-Differential
RBC Rule-Based Control
RMSE Root Mean Square Error
TABS Thermally Activated Building Systems
VAV Variable Air Volume

Subscripts
al Artificial lighting
Conv Convector
dl Daylight
inclinationAng Inclination angle of Venetian blind
posShading Shading position of Venetian blind
set Set-point

Indices and sets
i ∈ N :={1,2,. . . ,N} Zone of building
j ∈ J :={1,2,. . . ,J} MPC iteration
k ∈ K :={1,2,. . . ,K} Iteration in distributed approach
t ∈ T Time step

Parameters
J Prediction horizon
K Maximum number of iterations of distributed approach
N Number of zones
α Energy weighting factor
δ Threshold
θ Discomfort price
ρ Penalty parameter

Variables
r Residual
T Temperature
u Control input
ε Slack variable
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λ Dual variable

1. Introduction

The building sector accounts for approximately 40 % of the final energy consumption and 36 % of all
CO2 emissions in the European Union (EU) [1, 2]. Energy goals set by the EU aim at a reduction of
greenhouse gas emissions by 2030 by at least 50 % compared with 1990, energy consumption reduction by
2050 by as much as half compared to 2005 and a fully decarbonized building stock by 2050 [2, 3]. HVAC5

systems are responsible for the major portion of the energy used in buildings [4, 5] which renders them a
suitable candidate for increasing building energy efficiency and reducing energy consumption to contribute
to the goal of climate-neutrality of Europe by 2050. Apart from building renovations or improvements of
the building envelope, building automation systems controlling the building HVAC components suit as an
effective approach for substantial energy consumption reduction. Control of HVAC systems, especially for10

large-scale buildings, is challenging due to time-varying non-linear dynamics, set-points and disturbances
and a high amount of interactions [6]. Classical currently implemented control strategies for buildings are
Rule-Based Control (RBC) or Proportional-Integrative-Differential (PID) controllers due to their simplicity
and low computational requirement [7]. However, they need to be tuned and are not able to consider system
and comfort constraints, to handle time-varying systems dynamics or time-delay and to deal with multi-15

objective cost functions. For large-scale buildings, the rule generalization is very complex due to the thermal
and hydraulic coupling between the zones and HVAC components.

Model Predictive Control (MPC) has gained a lot of attention in the context of building control as a
promising, powerful control scheme with substantial benefits over conventional controllers [8]. It can predict
future disturbances and consider conflicting optimization goals as well as time-varying building dynamics,20

system and comfort constraints. Building characteristics that are beneficial for use in an MPC are a high
thermal mass/ thermal storage, large internal and external heat gains (occupancy, solar radiation) and slow
dynamic HVAC system behavior [9]. Apart from this, the demands on comfort (e.g. thermal, indoor air
quality, visual) have increased with people in industrialized countries spending on average 90 % of their
lifetime in buildings [10].25

Implementations of MPC in the form of simulative or practical studies have increased within the last
years. Applying the MPC to the operation of a large-cooling system in a university building in Merced,
Ma et al. [11] reached savings of 19 % in terms of a coefficient of performance. The application of MPC in
a real office building in Prague demonstrated energy consumption savings of 15 to 28 % compared to the
reference conventional control based on a heating curve [12]. West et al. [13] applied the MPC on an HVAC30

system of two office buildings in Australia resulting in an energy reduction of 19 % with similar comfort
levels. Similar results are obtained with more than 20 % energy savings in a research laboratory in Illinois
[14], more than 20 % primary energy reduction in an office building in Brussels [15] and a primary energy
reduction of 17 % for a large-scale simulation in a Swiss office building [16].

When applying MPC to large-scale, multi-zone buildings the optimization problems can become very35

large and computationally challenging. The computational complexity of the optimization problems further
increases due to the inherent nonlinearity in the dynamics and characteristics of the building and HVAC
system [17]. With the increase of state and decision variables, the computational complexity of the MPC
grows substantially. The time needed for the algorithm to converge to a global optimum increases exponen-
tially with an increase in complexity [18]. This can lead to scalability issues when the large optimization40

problem cannot be solved at all or in appropriate time, which limits the real-time capability of the MPC im-
plementation. An approach to cope with this challenge is distributed MPC which splits the original central
optimization problem into local subproblems. The coordination of the local subproblems can be executed
locally by communication between the subproblems or via a global coordinator.

This work is structured as follows. In Section 1.1 a literature research on distributed MPC for large-scale,45

multi-zone building energy systems is conducted categorizing the research studies into different distributed
optimization methods. Section 1.2 outlines the contributions of this work. In Section 2 a multi-zone building
model is presented which builds the base for the application of the proposed distributed MPC. Section 3
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elaborates the methodology, structure and communication scheme of the distributed MPC approach. In
Section 4, the proposed method is applied to a six-room nonlinear Modelica model, compared to a centralized50

and decentralized reference control and the results are discussed. Finally, a conclusion is drawn and an
outlook on further extensions and improvements of the framework is given.

1.1. Background

A distributed MPC addresses the aforementioned challenges for MPC in large-scale, multi-zone buildings
and improves the control performance due to several benefits. Computational demand, memory usage55

and computation time can be reduced by splitting the central problem into subproblems allowing for a
distribution of the computation demand. Scalability and real-time capability of the MPC approach are
improved. Real-time capability describes the ability to solve the optimization problem by calculating new
optimal control inputs within the time of the MPC sampling period which is adjusted to the dynamics of the
controlled building. By making use of a distributed MPC the adaptability, extensibility and maintainability60

of the MPC are enhanced as local subsystems can be replaced, removed or added without changing the
remainder of the control system. This is relevant as the replacement of components or renovations/ retrofits
of parts of the building are probable within the lifetime of a building. The distributed approach enhances
the reliability and stability of the control as subsystems can be easily updated or removed in a plug-n-play
approach avoiding an overall control loss. Furthermore, a distributed MPC fits well with the distributed65

structure of a building (multi-zone, multi-floor composition). The communication overhead and requirements
are reduced as large parts of the communication information can be handled locally and are not transmitted
to a centralized optimization, which could be prone to communication failures and a corresponding control
breakdown. Failures in the local optimizations or communication in one of the subzones do not prevent the
overall MPC from operating.70

Reviewing the literature for MPC in large-scale, multi-zone buildings, distributed approaches attracted
proportionally little attention compared to the number of studies on building MPC, which may be explained
by the nonlinear characteristics in building energy systems that complicate convergence guarantees for
nonlinear distributed approaches [19]. The distributed MPC approaches in the existing research papers can
be classified according to the following criteria:75

� Applied mathematical method

� Linearity/ nonlinearity of the controller model

� Cooperative/ uncooperative

� Iterative/ non-iterative

� Consideration/ neglection of thermal (wall/ door) coupling80

� Consideration/ neglection of hydraulic HVAC coupling

� Parallel/ sequential computation

� Modeling depth of building envelope and HVAC

� Coordination locally/ via a global coordinator

The dominating applied mathematical methods are:85

� (Primal-dual) active-set method

� Benders decomposition

� Dual decomposition
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� Information exchange

� Non-iterative lookup tables90

� Nash equilibrium

� ADMM

The primal-dual active-set method [20] is based on local identification of active sets (variables at lower
or upper bounds) and local updates of dual variables for the inequality constraints based on the active sets.
Globally, the non-active primal and dual variables for the equality constraints are calculated setting the95

inequality inactive dual variables to 0. The iterative, parallel approach is applied to a linear model of an
HVAC system with an Air Handling Unit (AHU) for central supply air conditioning in the form of cooling
and local Variable Air Volume (VAV) boxes for local reheating/ recooling. It considers thermal coupling as
a disturbance.

Moroşan et al. [21] propose a Bender´s decomposition method for distributed MPC of a multi-zone100

building with central and local zone-individual air conditioning through an AHU. The central control input
of the AHU is regarded as the complicating variable. The algorithm consists of solving a global master
problem with respect to the global complicating variable and solving the local problems with respect to the
local primal and dual variables. The variables of the respective other step are fixed. If the problem does
not converge, a new constraint is added to the master problem (called Benders cut). The iterative, linear105

approach considers thermal and hydraulic coupling and allows for parallel computation.
Dual decomposition is a widespread iterative, cooperative and parallel approach to implement distributed

building MPC. It relies on the Lagrangian formulation of the optimization problem, which allows a separation
of the optimization problem and ensures the fulfillment of the constraints of the original problem through
consistency constraints and updates of dual variables [22]. Ma et al. [23] propose a combination of a dual110

decomposition and a subgradient method tailored to multi-zone buildings with AHU systems consisting of
a central air conditioning as well as locally controlled VAV boxes. The nonlinear model is linearized at
each sampling time resulting in a Sequential Quadratic Programming (SQP) problem and considers thermal
coupling. Long et al. [24] implement dual decomposition based on a subgradient method in a stochastic MPC
for multi-zone buildings with local AHUs. The model is linearized by replacing the bilinear AHU control115

input term (mass flow multiplied with temperature difference) with a surrogate control input. The approach
takes thermal coupling into account and does not consider any hydraulic coupling. Eini and Abdelwahed
[25] develop a distributed MPC approach for a multi-zone building equipped with zone heaters with a focus
on thermal coupling based on dual decomposition. Thermal coupling is considered through walls and doors.
Door coupling is modeled in a simplified form fixing the air exchange between zones through doors to a120

parameter.
There are further approaches for distributed building MPC that do not rely on a specific class of algorithm

for decomposition or distributed optimization but build upon information exchange between (neighboring)
subsystems. Putta et al. [26] implement an iterative distributed building MPC approach where the control
inputs of sensible cooling of all zones are coupled in the global power consumption. After decoupling the125

optimization into subsystems, the zone-wise trajectories for the sensible cooling and the states are exchanged
between the zones at every iteration until convergence. The distributed parallel, uncooperative approach
is applied to a nonlinear, quadratic optimization problem and considers thermal coupling. Scherer et al.
[27] propose a distributed approach based on sequential optimizations tailored to sequentially structured
subsystems. The subsystems are coupled through a maximum supply water flow and each subsystem intro-130

duces a term in its objective modeling the influence on the dynamics of the next downstream subsystems. A
subsystem agent receives the residual water flow from its upstream agent, information about the decisions
for its downstream neighbors from the last iteration and solves its local optimization. The iterative, sequen-
tial and cooperative approach uses a linear controller model and neglects thermal coupling. Radhakrishnan
et al. [28] employ a hierarchical-distributed method for multi-zone buildings with central air conditioning135

which splits the nonconvex optimization problem into three sequential subproblems minimizing the energy
consumption of a chiller and a fan. In the first subproblem, an uncooperative distributed nonconvex MPC

5



minimizes the chiller consumption of all zones (with a fixed chiller coefficient of performance (COP)) based
on a linearized model considering the thermal neighbor coupling as a disturbance term. Subproblem 2 and
3 minimize the energy consumption of the chiller (with variable COP) and fan and are constrained by pro-140

viding the requested minimum cooling energy from subproblem 1. The non-iterative approach is executed
in parallel for subproblem 1 and in a sequential, centralized manner for subproblems 2 and 3.

In contrast to the iterative approaches, Baranski et al. [29] propose a sequential, non-iterative approach
for a distributed building MPC based on the generation of look-up tables. The concept is tailored to systems
with a sequential structure such as in AHUs but can also handle parallel systems at the end of the supply145

chain. For a predefined grid of combinations of coupling variables, the subsystem optimization problems
are optimized via a pattern search algorithm storing the results in three look-up tables (input: combination
of coupling variables, output: cost, outflow conditions and decision variables). Beginning with the last
subsystem in the supply chain the table is provided to its neighboring upstream subsystem where based on
interpolation of the look-up tables, upstream subsystems can estimate the cost their control decision will150

cause in downstream subsystems. The approach is applied to a nonlinear HVAC system model consisting of
two identical rooms equipped with decentralized air handling units and a central heat pump and boiler. The
cooperative approach does not consider thermal coupling, focuses on exergy destruction and uses nonlinear
Modelica models from a building energy simulation library as simulation models. Based on this work, in [30]
multi-layer Perceptron models are fitted by data from Modelica simulations to be used for a Brute Force155

optimization solver to speed up the subsystem optimizations. Kümpel et al. [31] modify the concept by
introducing a coordinator agent sending set-points to the subagents to be more suited to circular connected
systems. The subagents create lookup tables where subsystem cost and output variables are calculated based
on a simulation for a predefined set of inputs of coupling variables and set-points for the output variables.
The look-up tables are sent to the coordinator agent, which minimizes the sum of all subsystems costs and160

calculates optimal set-points for the coupling output variables for each subagent.
Nash optimization is a further approach used in distributed MPC for multi-zone buildings, which is char-

acterized by an uncooperative, parallel and iterative structure based on information exchange. By solving
the subproblems in an uncooperative but iterative way, the subsystems receive updated information for the
coupling variables from interconnected subsystems in each iteration and solve their subsystem optimization165

problems again. If the local optimization results differ less than a fixed threshold between two successive
iterations and cannot be improved anymore, the subsystems have converged to the “Nash equilibrium”. In
contrast to the cooperative approaches, the local cost functions do not include terms considering neigh-
boring or connected agents. Moroşan et al. [32] introduce the Nash optimization method into the field of
multi-zone building MPC with a focus on thermal coupling. The neighboring rooms exchange future output170

trajectories to be able to calculate the inter-zone influences. The approach is applied to a linear model
without considering any hydraulic coupling. Similar approaches of exchanging state and output information
to consider thermal coupling and reach a Nash equilibrium are used in [33] and [34].

A further common concept for distributed building MPC is Alternating Direction Method of Multipliers
(ADMM) [35]. It makes use of the augmented Lagrangian, i.e. the Lagrangian formulation plus an additional175

quadratic penalty term for increased robustness and better convergence compared to Dual Decomposition.
ADMM uses two sets of variables which allows a separation of the objective function. Optimization is done
with respect to one variable set with the other one fixed and vice versa (alternating direction). Updates
of the dual variables coordinate the fulfillment of the coupling constraints through the variable sets [35].
ADMM is guaranteed to converge for convex problems and only under specific assumptions for nonconvex180

problems; however, applying ADMM to nonconvex problems performs well on a broad class of nonconvex
problems [36, 37, 38, 39]. In the current research of distributed building MPC, ADMM has drawn lots of
attention and is generally considered one of the most promising methods for distributed optimization [40].
It is an iterative, cooperative method that is implemented mostly in a parallel computation form. Cai et al.
[41] develop an agent-based ADMM distributed MPC approach for multi-zone buildings that are equipped185

with an AHU. For the subsystems (both individual zones and AHU components), local copies of global
variables are introduced and their coincidence is ensured by equality consensus constraints which allow
for splitting of the optimization problem. The parallel approach is applied to a case study of a nonlinear
multi-zone building model served by a detailed AHU model taking into account thermal coupling. In [42]
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a demand agent is added to the ADMM concept which considers a demand charge for the sum of all peak190

demands. The cooling energy for all subsystems is provided by a central chiller and a fan whose maximum
capacity is also considered as a coupling constraint. Local copies are introduced for the subsystems and the
linear model consists of three office spaces coupled to local AHUs and a central chiller neglecting thermal
coupling. Hou et al. [43] propose a distributed approach based on a Proximal Jacobian ADMM, a modified
version of the traditional Gauss-Seidel ADMM especially tailored for parallel computation of a multi-block195

ADMM. Consensus constraints due to coupling in zone dynamics (thermal coupling) and cost function as
well as shared constraints due to shared resources (total mass flow rate from AHU) are introduced using
local copies of the coupling variables. The approach is applied to a linear model of a multi-zone building
coupled to an AHU in consideration of the bounded total mass flow rate. Lin and Adetola [44] propose a
parallel ADMM method for a multi-zone building equipped with an AHU to provide ancillary services to200

the power grid. The AHU is controlled through the global supply air temperature and local zone-individual
airflow rates. The thermal dynamics of the zones (no consideration of inter-zone thermal coupling) and
coupled global cost function are decoupled concerning the central AHU by introducing copies for the supply
air temperature for each zone, the airflow rates of each zone and a sharing constraint for the sum of the zone
flow rates. Yang et al. [45] employ a parallel, modified version of the ADMM, the Accelerated Distributed205

Augmented Lagrangian (ADAL), for a multi-zone building equipped with a central AHU and local VAV
boxes. An additional virtual agent is introduced considering the maximum bound of the sum of local airflow
rates. The approach considers thermal coupling and is implemented on a linearized surrogate model of the
multi-zone building.

Hydraulic coupling between different zones in buildings can be induced by thermally activated building210

systems (TABS) which is a heating and cooling system allowing to use the thermal mass of the building
as thermal storage. Water pipes embedded in the center of the concrete provide the heating or cooling
energy and transfer it to the inert concrete of floors or ceilings, which transfer the heating or cooling
energy to the room. TABS distributors providing the heating or cooling energy to the rooms through
pipe systems are not controlled room-wise due to the slow dynamics and inertia and couple several rooms215

together [46]. To consider hydraulic TABS coupling Killian et al. [47] develop an uncooperative distributed
MPC for a multi-zone building where all rooms are equipped with local fan coils and coupled to central
TABS. Based on sequential, iterative information exchange the local fan coil MPCs and the central TABS
MPC calculate overall control inputs considering the control decision of the respective other systems as
disturbances. Thermal coupling is neglected in the approach.220

1.2. Contribution

The major novelty of this work consists in the implementation of a distributed gradient-based MPC
concept for multi-zone buildings based on Modelica controller models. In this manner, the advantages of
the Modelica language and its extensive building simulation libraries are extended to the use in large-scale,
multi-zone buildings based on a gradient-based distributed MPC. In the majority of the cited research stud-225

ies, simulation and controller models are built in a simplified form regarding the building envelope (walls,
windows and doors), thermal transfer phenomena (convection, radiation and conduction) and in particular
the modeling of the HVAC system. In the proposed distributed MPC in this work, the building envelope as
well as the HVAC components are modeled in a detailed way with respect to relevant physical phenomena
and dynamics. The distributed MPC concept is applied to local nonconvex optimization problems based230

on nonlinear controller models, which are implemented sparsely in literature. In the distributed optimiza-
tion method an uncooperative and a cooperative approach are combined addressing thermal and hydraulic
coupling at the same time. The uncooperative part accounts for the thermal coupling between the zones
and builds upon the Nash optimization. The cooperative part considers the hydraulic coupling of the zones
through a central, shared HVAC system and is implemented with an approach based on ADMM. Making235

use of the consensus ADMM implementation the approach is tailored to controlling the thermal mass of a
building through TABS, and thereby exploiting passive storage capacities of buildings, which are essential
to integrate buildings in future global energy systems. The overall distributed method is iterative and allows
for parallel computation. It is structured in a plug-n-play fashion for easy extensibility and adaptability
based on an automated central coordinator.240
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With regard to the thermal coupling, detailed models of thermal coupling through doors are implemented
which are not integrated in the distributed building MPC literature as far, apart from simplified door
modeling approaches [25]. As shown in the course of this paper, the impact of open door coupling is
substantial compared to wall coupling and thus, should be taken into account. To keep the computational
demand of the distributed MPC low, a data-driven modeling approach is used which is fitted and validated245

with data from simulations including a detailed door model from a Modelica building simulation library.
The data-driven model calculates the air exchange between two door-coupled rooms based on the room air
temperature difference.

Finally, a block-lower triangular (BLT) decomposition scheme is employed to reduce the number of
algebraic variables in the subproblems, which tend to be high for building energy systems models. The250

overall distributed MPC approach is applied to a detailed nonlinear six-room-building model, which is
implemented in Modelica and features both thermal and hydraulic coupling.

In summary, the innovations of this paper within the scope of distributed MPC in multi-zone buildings
are:

� Distributed gradient-based MPC for multi-zone buildings based on Modelica controller models255

� Simultaneous consideration of thermal and hydraulic coupling using Nash equilibrium and ADMM

� Detailed modeling of the thermal coupling through doors (based on a data-driven modeling approach)

� Application of distributed MPC on nonlinear controller models with detailed HVAC components con-
sidering both thermal and hydraulic TABS coupling

2. Modeling260

The methodology for the distributed approach is inspired by the case study model but is also applicable to
more general coupling forms. The multi-zone building model is implemented in the form of a nonlinear white-
box model in the modeling language Modelica [48]. When implementing MPC in buildings the modeling
part accounts for the major portion of project time and costs and therefore plays an essential role in the
success of an MPC implementation [12]. Modelica suits the use in MPC for several reasons. It is an open-265

source, equation-based, acausal and object-oriented modeling language with a graphical interface to connect
components [49]. These characteristics point out the flexibility and modularity of Modelica which is crucial
taking into consideration that every building is unique. In common projects, extensive open-source Modelica
simulation libraries for building energy systems have been developed by experts [50]. Modelica supports
the Functional Mockup Interface (FMI) standard that allows the model exchange or co-simulation with270

other simulation programs and suits both simulation and (gradient-based) optimization due to the language
extension Optimica [51].

The base for building the controller and simulation models in this work is the open-source Modelica
simulation library AixLib [52]. The AixLib provides models of HVAC systems as well as high and reduced-
order building models. An optimization library is developed by adapting the AixLib models for compatibility275

with the used optimization framework JModelica.org [51] and the solver IPOPT [53]. JModelica.org is used
for the gradient-based optimization of Modelica models and is equipped with an interface to IPOPT, which
is an open-source nonlinear solver able to solve large-scale nonlinear problems. More details regarding the
necessary modifications of the AixLib models can be found in [54]. Modified AixLib models are validated
trough simulations comparing the results with the ones of the original models.280

The building model structure is shown in Fig. 1 and consists of six rooms that are coupled thermally (via
walls and inner doors; outer doors are not modeled here) and hydraulically. High-order room models are
chosen to retain the neighboring coupling structure among the rooms. All room models are equipped with
a dynamic air model (MixingVolume), external and inner walls, windows with models for external Venetian
blinds for active solar shading (for more information regarding the Venetian blind models see [54]), simplified285

pumps, a convector and are coupled to a central, shared TABS implemented as Concrete Core Activation
(CCA) in the floor. The central CCA is controlled via one shared control input for the overall CCA zone
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regulating the supply water mass flow. Pumps supply both the CCA and the convector with supply water
flows at fixed temperatures. Thermal transfer is taken into account in the form of convection, conduction
and radiation (longwave radiation exchange inside the room modeled based on the AixLib ”two star” room290

model). An occupancy model calculates human heat emissions according to office-typical schedules (8 a.m.–
12 p.m. and 1–6 p.m.). Weather data from an AixLib resource file for San Francisco in January 1999
is input to the model and comprises a heating period. To focus on the functionality and performance of
the distributed MPC approach, no model mismatch (controller model identical to simulation model) and a
perfect forecast of the disturbances are assumed.295
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Figure 1: Structure of the Modelica six-room-building-model including thermal coupling components

Control inputs of the sub-models are the local water mass flows to the convectors, the shared, central
global water mass flow to the CCA and the vertical position and inclination angle of the external Venetian
blinds accounting for both thermal and visual comfort (minimum illuminance of 500 lux in occupied times).
Artificial lighting is not modeled explicitly and the artificial lighting power consumption is assumed to vary
linearly with the required artificial illuminance. An individual room overview including the components and300

control inputs is shown in Fig. 2. To further increase energy efficiency and take advantage of the predictive
control concept in the scenario of an office building, a night set-back is implemented for the temperature
range which implicates that during unoccupied (night) times the thermal comfort ranges are wider than for
occupied times (occupied times: 293 - 295.5 K, unoccupied times: 292 K - 296.5).

The physics-based, white-box controller model is nonlinear due to the characteristic nonlinearities inher-305

ent in the thermal transfer phenomena (radiation, convection) and the HVAC systems leading to a nonlinear
programming (NLP) problem. Compared to linear simplified models, nonlinear models reproduce the real
building behavior more precisely over the whole operation range and enable a higher potential of MPC sav-
ings closer to the theoretical performance bound. Apart from this, they allow more flexibility in formulating
the model equations, constraints and cost function [17]. A further advantage of nonlinear building MPC is310

that models can be directly configured based on (adapted) building simulation libraries. The efforts for pre-
and postprocessing, variable mapping and linearization are reduced and optimization with respect to the
control inputs that are implemented in the real system is enabled. Especially for the use in MPC a model
of high accuracy is essential, as an MPC tends to operate the room temperatures near the bounds to save
energy where an inaccurate model would increase the risk of comfort violations. The use of physics-based315

nonlinear models comes at the cost of higher computational demand; however, due to current improvements
of optimization algorithms and solvers as well as developments in server and cloud computing the compu-
tational power is increasing exponentially [7]. In white-box models, the parameters and (input) variables
preserve their physical meaning and have a geometrical equivalent inside the real building in contrast to gen-
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Figure 2: Room structure including components and control inputs

eral grey-box and black-box approaches [55], which ensures their explicit location, improved comprehension320

of the system behavior and fault detection. The distributed optimization in the proposed approach allevi-
ates using local high-accuracy models compared to a centralized variant as the overall model complexity is
reduced in the spatial dimension by splitting the problem.

According to Fig. 1, the rooms are coupled thermally via inner walls and inner doors. As shown in Fig.
3 and a simulative study of thermal coupling between rooms of different temperatures (door area of 1,9 m2

325

and wall area between the coupled rooms of 15 m2), thermal coupling induced by open doors can cause heat
flows that are larger than the ones induced by wall coupling. To take the door coupling into account a data-
driven model is created. The data is generated in a simulation of two rooms coupled through an accurate
AixLib door simulation model which calculates the bi-directional airflow through a door, is discretized along
the height coordinate and which has either an open or closed opening state. To analyze a large range of330

(both positive and negative) temperature differences between the rooms, artificial heat gains are added to
the rooms. The data-driven model is based on polynomial regression using scikit-learn [56] and calculates
the exchanged volume airflow between the rooms as a function of the room temperature difference. Derived
from the simulation results, the air exchange for a closed door can be considered negligible and is set to
zero. The regression function is of order 4, only includes coefficients of even order and thus is symmetrical.335

By using the data-driven door model the computation times can be significantly reduced compared to using
the original simulation model in the MPC . The data-driven model is validated by comparing the calculated
exchanged enthalpy flow rates between the rooms with the results from the original door simulation model
which is shown in Fig. 4. For temperature differences between -2 and 2 K where most of the thermal
coupling takes place, the results are visually and numerically very close to the original results. The Mean340

Absolute Error (MAE) is 8.4 W, the Root Mean Square Error (RMSE) is 10.9 W. In this work, the door
opening state is considered predictable and assumed to be open when the rooms are occupied. In a practical
implementation, the opening status could be predicted based on historical data of the user behavior using
door sensors.

3. Methodology345

In this work, a gradient-based distributed MPC approach for multi-zone building models based on Model-
ica controller models is proposed. It simultaneously considers thermal coupling through walls and data-driven
door models as well as hydraulic coupling induced by a central HVAC system. In the focused case study, the
central HVAC consists of TABS implemented as CCA in the floor. The functionality of CCA builds upon
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Figure 3: Comparative study of thermal coupling through an open door and wall for a simulation of two coupled rooms with
different room temperatures

Figure 4: Comparison of the regressed trajectory for the exchanged enthalpy flow and the simulated trajectory of the original
door model

11



the activation of the thermal mass of the building in the form of the concrete. The activation allows for350

the use of the building mass with potential high inertia as passive storage to shift the time of energy supply
and demand which is a valuable characteristic in the context of volatile renewable energy supply. Due to
the high time delay and inertia, the use of MPC as an anticipatory control concept is beneficial compared
to conventional control strategies. Through its high thermal capacity, CCA is well suited for covering the
building heating/ cooling base load while more dynamic and reactive actors (in this case study the convec-355

tors) provide the peak load. Making use of the radiative heating concept in CCA (in contrast to convective
concepts) low-temperature heating (or high-temperature cooling) energy can be integrated which increases
energy efficiency and enables the use of waste heat on low-temperature levels from data centers. Due to
its inertia and slow dynamics, one TABS/ CCA coil generally provides several rooms of similar thermal
properties and orientation (e.g. division a building floor into a north and south zone) [46]. Therefore, it360

introduces strong coupling between the rooms of the same TABS control loop. It is assumed here that the
inlet water temperatures for every CCA room section in one CCA coupled zone differ in a negligible way
due to a uniform arrangement of the CCA coils in parallel to the rooms. In the following, the supply water
temperatures are considered identical.

The two inter-zone coupling forms are integrated based on two different mathematical methods. The365

thermal coupling is considered through an uncooperative Nash equilibrium approach whereas the hydraulic
coupling is incorporated through a cooperative consensus ADMM approach. The uncooperative Nash op-
timization considers the room temperatures of neighboring zones as known disturbances and is chosen for
thermal coupling as it is a distributed optimization method with low computational demand. This reduces
the complexity of the distributed method for large-scale buildings. Apart from this, the temperatures for370

example in office buildings are generally in similar ranges due to similar work and occupancy schedules and
heat gains/ losses are generally dominated by internal (e.g. occupancy) or external (e.g. window openings,
transmission of solar radiation) heat gains. In addition, the MPC tends to operate the rooms at similar com-
fort bounds for energy efficiency reasons (lower temperature bound in heating periods, higher temperature
bound in cooling periods). Nevertheless, thermal coupling plays an essential role as due to the operation375

near the comfort bounds unconsidered thermal exchanges between rooms can cause discomfort.
The cooperative consensus ADMM is chosen for the hydraulic coupling as the coupling variables in the

form of the local control inputs can differ significantly and the consensus constraint of one central shared
control input can only be ensured with a cooperative approach. As stated in Section 1.1, ADMM is regarded
as one of the most promising distributed optimization approaches. Both applied approaches are iterative380

and allow for a computation of the local subproblems in parallel. A global coordination scheme monitors
the progress of both approaches and coordinates the subproblems by updating information.

For the thermal coupling (here coupling of the local state variables), the air temperatures of neighboring
rooms that influence the dynamics of a subsystem via wall or door coupling are considered as known distur-
bances. After every optimization iteration, the locally calculated trajectories for the local room temperatures385

are sent to the coordinator, which then sends them to all neighboring subsystems that are influenced by the
corresponding zone, and the local optimizations are repeated. The local optimizations iteratively reach the
Nash equilibrium if, for all local subsystems i ∈ N and averaged over the MPC horizon J , the absolute
deviation of the local room temperatures trajectories between two consecutive distributed iterations k + 1
and k does not differ more than a prefixed Nash threshold δNash:390

rNash,i =
1

|J |
∑
j∈J
|T k+1

Air,i,j − T k
Air,i,j | < δNash (1)

The hydraulic coupling (here coupling of the local control inputs) induced by the central CCA is in-
corporated by a consensus ADMM approach. To decompose the optimization problem coupled through
the central, shared CCA control input (here represented by the CCA supply water mass flow), for every
subsystem i ∈ N a local copy uCCA,local,i of the global CCA control input uCCA,global is created. Terms
ensuring the consensus of the local copies and the global CCA control input are added to the cost functions395

of the local subsystems and the coordinator (see Eq. 2 and 10). In the case study model, the local cost
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functions in Eq. 2 solve their local subproblems minimizing energy consumption of the convector, CCA and
artificial lighting and discomfort (quadratic penalization term for temperatures outside the comfort range
through the introduction of slack variables εi and ε̄i) in consideration of the ADMM terms, constraints in
Eq. 3 - 9 and the model dynamics. Amongst other control inputs, at iteration k + 1 of the distributed400

approach the local CCA control inputs uk+1
CCA,local,i are obtained.

{uConv,i, uCCA,local,i, ual,i, uposShading,i, uinclinationAng,i, εi, ε̄i}
k+1

= argminuConv,i,uCCA,local,i,ual,i,uposShading,i,uinclinationAng,i,εi,ε̄i

[αConv ∗ uConv,i ∗ (Tsupply,Conv,i − Treturn,Conv,i)+

αCCA ∗ uCCA,local,i ∗ (Tsupply,CCA,i − Treturn,CCA,i)+

αLight ∗ ual,i + θ ∗ (εi2 + ε̄2i ) + λk
Dual,CCA,i ∗ (uCCA,local,i − uk

CCA,global)+
ρ

2
∗ (uCCA,local,i − uk

CCA,global)
2
]

(2)

subject to

T room,air,i − εi ≤ Troom,air,i ≤ T̄room,air,i − ε̄i (3)

εi, ε̄i ≥ 0 (4)

illumdl,i + illumal,i = illumset,i (5)

0 ≤ uConv,i ≤ uConv,max (6)

0 ≤ uCCA,local,i ≤ uCCA,global,max (7)

0 ≤ uposShading,i ≤ uposShading,max (8)

0 ≤ uinclinationAng,i ≤ uinclinationAng,max (9)

In these formulations, uConv,i,uCCA,local,i,ual,i,uposShading,i and uinclinationAng,i are the local control inputs
of convector and CCA supply water mass flow, artificial lighting (in the form of the artificial illuminance),
shading position and inclination angle. Troom,air,i is the room air temperature, T room,air,i and T̄room,air,i are
the lower and upper comfort temperature bounds, εi and ε̄i are slack variables, softening the temperature405

constraint and quantifying temperatures outside the comfort range. Tsupply,Conv,i, Treturn,Conv,i, Tsupply,CCA,i

and Treturn,CCA,i are the supply and return water temperature of the convector and CCA. αConv and αCCA

are energy weighting factors for the convector and CCA including the heat capacity of water, αLight a
weighting factor for the energy consumption of artificial lighting and θ a factor penalizing room temperatures
outside the comfort range. illumdl,i is the daylight, illumal,i the artificial light and illumset,i the set-point410

illuminance. uk
CCA,global is the global CCA control input from the previous iteration k calculated by the

global coordinator, λk
Dual,CCA,i are the dual variables from the previous iteration k and ρ is the penalty

parameter. Eq. 6 - 9 contain the minimum and maximum bounds for the control inputs with uposShading,i

∈ [0, 1] (0: fully opened, 1: closed) and uinclinationAng,i ∈ [0°, 90°] (0°: fully opened, 90°: closed).
Based on the new calculated trajectories for the local CCA control inputs uk+1

CCA,local,i, the global coor-415

dination scheme calculates the global CCA control input in Eq. 10 and then updates the dual variables
(Lagrangian multipliers) for every zone based on the fulfillment of the corresponding consensus constraint
ensuring consistency between the local and the global CCA control variables (Eq. 11).

uCCA,global
k+1 = argminuCCA,global

[
∑
i∈N

λk
Dual,CCA,i ∗ (uk+1

CCA,local,i

− uCCA,global) +
ρ

2
∗ (uk+1

CCA,local,i − uCCA,global)
2]

(10)

λk+1
Dual,CCA,i =λk

Dual,CCA,i + ρ ∗ (uk+1
CCA,local,i − uk+1

CCA,global) (11)
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The ADMM penalty parameter ρ appearing in Eq. 2, 10 and 11 is set by the user. A higher penalty
parameter implicates a higher weight on the fulfillment of the consistency constraint compared to the energy420

consumption minimization and vice versa. Here, a two-block Gauss-Seidel ADMM is used where the local
optimizations are calculated in parallel and are followed by the global optimization and Lagrangian multiplier
update. Compared to the local optimizations in Eq. 2, the computation time of the global calculation in Eq.
10 can be considered negligible. As a global coordinator is used, the approach is not completely distributed
but it could be adapted with regards to this. The ADMM applies both a primal and dual residual criterion425

as a condition for terminating the ADMM iterations (Eq. 12 and 13, based on [35]):
The primal residual for iteration k + 1 for one zone i ∈ N is calculated through:

rADMM,primal,i =
1

|J |
∑
j∈J
|uk+1

CCA,local,i,j − uk+1
CCA,global,j | < δADMM,primal (12)

The dual ADMM residual for iteration k + 1 is calculated through:

rADMM,dual =
1

|J |
∑
j∈J
|uk+1

CCA,global,j − uk
CCA,global,j | < δADMM,dual (13)

If both the Nash optimization and the ADMM residuals fall below their corresponding termination
criteria for all subsystems the MPC proceeds to the next MPC sampling step j + 1. Additionally, in every
MPC step j, a maximum number of iterations K is set as a termination criterion for the distributed approach.
The overall distributed MPC approach based on ADMM and Nash optimization is shown in Algorithm 1.430

Algorithm 1: Proposed distributed MPC approach based on ADMM and Nash optimization

1: Initialization: choose ρ > 0, tsampling, set λ0
Dual,CCA,i = 0, u0

CCA,global = 0; j ← 1; k ← 1;
N :={1,. . . ,N}; tsimulation,start = 0; tsimulation,end = tsampling

2: for j ∈ {1,. . . ,J}:
3: for k ∈ {1,. . . ,K}:
4: For all zones i ∈ N in parallel:
5: Obtain uk

CCA,local,i minimizing local cost functions according to Eq. 2.

Send uk
CCA,local,i and local room temperature trajectories to coordinator.

6: Coordinator: Obtain uk
CCA,global minimizing global cost function according to

Eq. 10.
7: Coordinator: Update dual variables λk

Dual,CCA,i for all i ∈ N according to

Eq. 11. Send trajectories for uk
CCA,global, λ

k
Dual,CCA,i and neighboring room

temperatures to the subsystems.
8: If Nash and ADMM termination conditions are fulfilled according to Eq. 1,

12, 13 or k = K:
Exit the inner loop and go to Step 10.

9: else:
k ← k + 1
Go to Step 4.

10: Local subsystems send control inputs uk
CCA,local,i to the simulation. Compute average

CCA control input.
11: Simulate for t = [tsimulation,start, tsimulation,end].
12: tsimulation,start ← tsimulation,start + tsampling; tsimulation,end ← tsimulation,end + tsampling

13: Send simulation results to local subsystems to update initial optimization states.
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14: If j = J:
Exit outer loop.

15: else:
j ← j + 1 and go to Step 3.

The communication structure is summarized in Fig. 5. In every iteration of the overall distributed
method, the local subsystems optimize their subproblems, send the calculated trajectories for their CCA
control inputs and the room temperature to the global coordinator. The local optimization results of the
respective previous optimization serve as initial guesses to “warm start” a new optimization which is essential435

for a nonconvex ADMM. Based on the exchanged information the global coordinator optimizes the global
cost function calculating new trajectories for the global CCA control input and then updates the dual
variables ensuring the consensus constraints between the global and local copies for the CCA input. The
coordinator calculates the residuals for the ADMM and Nash optimization and checks if the distributed
method has converged under the user-specified thresholds for both ADMM and Nash optimization. It sends440

the trajectories for the air temperatures, global CCA control inputs, updated dual variables and the iteration
convergence status to the local subsystems, which then continue their calculations based on the iteration
convergence status. The room temperature trajectories are only sent to the subsystems that are influenced
by the corresponding subsystem, i.e. the neighbor systems. If the termination criteria for both ADMM and
Nash optimization are fulfilled, the local subsystems send all control inputs calculated in the last iteration to445

the global coordinator where the local CCA control inputs are converted into one shared averaged value and
the simulation on the coupled building model is run for one MPC sampling step. The simulation results after
the sampling step are then sent to subsystems to update the optimization states for the next optimization
at the next MPC iteration and the MPC iteration counter is increased. If the termination conditions of the
distributed MPC are not fulfilled and the maximum number of distributed iterations is not reached, the450

iteration counter of the internal distributed method is increased and the subsystems solve the subproblems
again based on the new information sent by the coordinator.

Global coordinator:
Optimization of global cost function with 

respect to global CCA control input
+

Update of dual variables

Optimization of local subsystems
+ 

Local subsystems send optimized trajectories 
for the local CCA control input and local air 

temperature to coordinator

Global coordinator sends trajectories for  global 
CCA control input, updated dual variables and 

local air temperatures to local subsystems

Local subsystems send 
optimized control inputs to 
coordinator for simulation 

Global coordinator sends 
simulation results to local 

subsystems to update initial 
optimization states 

Termination condition 
(Nash optimization, 

ADMM, max iterations) 
fulfilled?

no yes

START

Increase MPC 
iteration by 1

Global coordinator: 
Averaging of local CCA control 

inputs
+

simulation

Increase iteration of 
distributed method by 1

Figure 5: Overall communication structure of the distributed MPC
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The multi-zone building model is decomposed zone-wise. To simplify the modeling in Modelica and
keep it as modular as possible half-wall structures are used for the inner walls to couple zones together
in a straightforward way. To take the thermal coupling through walls into account, in the local controller455

model the second half of an inner wall of the neighboring room is added in combination with the variable
temperature boundary condition component (“PrescribedTemperature”) of the Modelica library and the
neighbor temperature trajectories sent from the coordinator as input. For considering the thermal coupling
through doors the data-driven door models based on the regression functions from Section 2 are integrated
calculating the air exchange and enthalpy flow rate based on the air temperature difference between two460

rooms and the opening state. The general modeling is structured in a manner to easily add further rooms
and wall/ door coupling (plug-n-play approach). The zone models used for the coupled global simulation
build the base for creating the distributed controller models making use of the Modelica “extend” function,
which avoids code duplication and model inconsistencies. Dimensioning, orientations of the internal and
external walls and windows including Venetian blinds are set in the Python framework in JModelica.org to465

keep the framework as automatable as possible. The assignment of neighbors to every room takes place
in Python as well. Currently, the adding of zone models and the neighbor assignment is done manually
but an automatic building configuration in Python based on room templates is planned. The remainder of
the framework is already automated to such a degree as the local subsystems and the global coordinator
automatically communicate the relevant coupling variables based on the specified neighbor configuration.470

For every local controller, an Optimica .mop file is created based on the Modelica (.mo) file to provide further
optimization-characteristic information such as the cost function and constraints. The overall distributed
MPC framework is written in Python based on JModelica.org. The complete toolchain is shown in Fig. 6.
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Optimization 
options
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(weather, 
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Dynamic 
optimization 

problem HSL

Linear solver

ADMM 
and Nash 
options

Figure 6: Overview over toolchain for implementation of the distributed MPC approach

To further reduce computation time and controller model complexity and alleviate the use of high-
accuracy models, a block-lower-triangular (BLT) decomposition method based on the JModelica.org frame-475

work is employed [57]. By solving some of the algebraic equations of the differential-algebraic equations
(DAE) in a preprocessing step, the number of algebraic variables in the optimization problems, which tends
to be high for the focused energy systems (significantly higher than the number of state variables), can be
considerably reduced. The framework includes the features of block-triangular ordering, tearing and sparsity
preservation. It has to be noted that not all algebraic variables can be marked as eliminable as some are480

essential for reproducing the system dynamics and preserving system stability. Conducting large-scale sim-
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ulations, these variables are derived and marked as non-eliminable. Further, algebraic variables appearing
in constraints or the cost function are excluded from being eliminated.

4. Results and discussion

In a simulative case study, the proposed distributed MPC approach is applied to the nonlinear building485

model described in Section 2 containing detailed component models for the building envelope and HVAC.
To validate the functionality of the approach in a scenario where thermal and hydraulic coupling have a
large impact on the system behavior, occupancy heat gains of different dimensions are generated in the
differently oriented rooms. In this way, temperature differences are created which induce heat flows between
the rooms. In a decentralized MPC neglecting any coupling, the local subsystem controllers would control490

their corresponding CCA control inputs different from each other based on the respective heat gains in the
room. This would violate the constraint of a global, shared CCA control input. Therefore, this scenario is
suitable to analyze how well the approach integrates thermal and hydraulic coupling.

To compare the performance of the method against alternative control methods, additional MPC variants
in a centralized and a decentralized form are applied. The centralized concept consists of one central495

controller that calculates the large-scale optimization problem considering all coupling forms. It intrinsically
accounts for the thermal coupling and is constrained by one shared global CCA control input which is applied
to every room. The decentralized variant consists of local controllers neglecting any thermal and hydraulic
coupling. In the non-centralized approaches (distributed and decentralized variant), the shared CCA control
input applied to the simulation model is calculated by averaging all optimized control inputs from the local500

optimizations. The control quality is quantified in terms of the following Key Performance Indicators (KPIs):
Energy consumption (weighted sum of CCA, convector and lighting, in kJ), thermal discomfort (quantifying
the amount of Kelvin hours during which the local room temperatures are outside the comfort range, in
Kh) and computation time/ computational time ratio. Computation time comprises the time used for the
total MPC. The computational time ratio quantifies the relation of the computation time to the sampling505

time (time span during which the building is controlled). If the ratio is < 1, the control strategy is real-
time capable. All control strategies are executed in JModelica.org 2.14 including PyFMI for the simulation,
IPOPT 3.13.1 and the linear HSL solver ma27 [58]. For solving the MPC problems, an OpenStack instance
based on a Linux machine, Ubuntu 18.04, 8 VCPUs and 32 GB RAM is used. For the discretization via
collocation, 96 collocation elements with 2 collocation points are chosen. All MPCs have a prediction horizon510

of 24 h and a sampling period tsampling of 15 min. The simulation horizon (sampling time) is 5 days (=120
h) and starts at 8 a.m. The penalty parameter ρ is set to 102, the primal ADMM threshold δADMM,primal

to 0.01, the Nash threshold δNash and dual ADMM threshold δADMM,dual to 0.2. The maximum number of
distributed iterations K is set to 7.

In Fig. 7 the simulation results of the distributed MPC approach are shown. The ”Outdoor temperature”,515

”Solar radiation” and ”Occupancy” subplot depict the different disturbances affecting the system behavior.
The outdoor temperatures during hours 60–120 are generally lower than the ones during hours 1–60; thus,
the heating load is higher in the second period. The direct solar radiation hits the external window facade
of rooms 1 and 2 from a west direction, the facade of room 4 from a south direction, the window facades of
rooms 5 and 6 from an east direction and the north-oriented facade of room 3 is not hit by direct sunlight.520

During the occupancy periods, there is one person in rooms 3 and 5, two persons in rooms 1 and 6 and three
persons in rooms 2 and 4.

In the first subplot of Fig. 7, the optimization trajectories for the CCA coupling variables in the form of
the global control input uCCA,global and the local room copies uCCA,local,i are presented. The ADMM applied
to a non-convex problem performs well showing good convergence results. The trajectories of the global525

CCA control input and the local copies show a good agreement for almost the entire time horizon fulfilling
the consensus constraint of one shared CCA control input. Some deviations can be found during hours 44,
50 and 100. The MAE between the local control input copies and the global CCA control input averaged
over all subsystems is 0.001 and the RMSE is 0.001. The CCA is controlled with slow dynamics due to the
high inertia and covers the heating base load which is generated by the slow disturbance quantity of the530

outdoor temperature. The first and fifth subplot show that the CCA supplies the highest mass flows before
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the maximum heat demand at the time of the lowest outdoor temperatures; thus, the CCA is preheated to
be able to cover the heating demand in a future period. By preheating the CCA, the time of energy supply
and demand are decoupled. During the second warmer day, the CCA is hardly used and the convector
nearly covers the entire heating load (”Heating power consumption” subplot).535

As shown in the ”Actuator mass flows” subplot, the convector is regulated in a more dynamic and
responsive way and reacts to faster disturbances in the form of occupancy and solar radiation compensating
for the heating peak loads. In contrast to the CCA, the maximum supply flows for the convector are provided
at the time of the lowest outdoor temperatures. The maximum bounds for the mass flow to both CCA and
convector (maximum mass flow of 0.1 kg/s) are met throughout the complete time horizon.540

In the ”Local temperatures” subplot it can be seen that thermal comfort can be ensured for almost the
complete MPC horizon. Temperature bounds are exceeded during hours 24 and 120 leading to a total thermal
discomfort of 3.03 Kh. The distributed MPC takes advantage of the comfort ranges during all periods and
further cools down the rooms during the night set-back. During the period of high internal gains through
occupancy and solar radiation (period of cooling load) the room temperatures are operated near the higher545

comfort bound and during the period of non-occupancy (period of heating load) the temperatures are kept
very close to the lower comfort bound. In the power consumption subplots for the CCA, convector and
artificial lighting the energy efficiency of the MPC approach is visible. During the periods of internal and
solar gains, the heating power consumption is reduced to a low/ near-zero value. A widespread non-energy-
efficient control phenomenon in buildings is simultaneous cooling and heating. The plots of the heating550

power consumption and Venetian blind control inputs (”Inclination angle” and ”Shading position” subplot)
reveal that cooling (here represented by the Venetian blinds to block solar heating energy from entering the
room) and heating rarely occurs at the same time. Power is only consumed in periods where it is really
needed. The total energy consumption of the distributed MPC approach is 683 668 kJ.

The Venetian blinds are controlled by regulating the vertical shading position and inclination angle to555

harvest a maximum of the cost-free solar heat gains and daylight (”Inclination angle” and ”Shading position”
subplot) and to predictively operate the room temperatures near the upper comfort bound. The missing
illuminance to fulfill the illuminance set-points is provided by the artificial lighting (”Illumination power
consumption” subplot).

In the ”Inter-zone heat flows” subplot the impact of the door coupling compared to the wall coupling is560

depicted. The dimension of the heat flows induced by open door coupling is substantial compared to the
wall-induced flows and generally higher (based on a door area of 1,9 m2 and a wall area between the coupled
rooms of 12 m2). It confirms the thesis from Section 2 that open door coupling plays a major role in thermal
coupling and should be taken into account.

In Fig. 8 a temperature plot for an exemplary local zone (here room 3, which is thermally coupled to565

three other rooms) is presented where both the optimized and simulated room temperature trajectories are
plotted to validate the correct functionality of the MPC. The simulated and optimized trajectories match well
which proves that the optimized trajectories calculated by the optimization solver show a good correlation
with the ones obtained by applying the calculated control inputs to the coupled simulation model. It further
implies that there are no essential unconsidered thermal heat flows induced by the neighbor rooms.570

By applying the BLT decomposition scheme presented in Section 3, the number of algebraic variables,
which form the largest fraction of the total variables, can be reduced significantly. For the example of the
local optimization of room 1, the number of algebraic variables before the reduction is 480. By applying the
decomposition scheme 434 algebraic variables can be eliminated resulting in 46 remaining algebraic variables
which reduces the model size essentially. By using the BLT decomposition, the computation times can be575

reduced by up to 90 % compared to the original optimization problem with the full number of algebraic
variables. The total number of variables for subproblem 1 is 95 including 33 inputs (4 control inputs, 1 slack
variable, 24 disturbance variables and 4 communication variables of the distributed MPC), 3 time-varying
parameters and 13 states. The computation time is 20 928 s and the computational time ratio is 0.048;
accordingly, the distributed MPC approach is approximately 21 times faster than real-time.580

In Fig. 9 the simulation results for the decentralized MPC variant are shown. The same BLT decomposi-
tion scheme as in the distributed MPC is applied. In the first subplot the simulated temperature trajectories
are depicted. During most of the non-occupancy periods and at the beginning and end of the occupancy
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Figure 7: Simulation results of the distributed MPC
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Figure 8: Optimized and simulated room temperature trajectories of room 3 for the distributed MPC

periods the lower comfort bounds of the rooms are violated. Neglecting thermal coupling and the inter-zone
heat flows shown in the ”Inter-zone heat flows” plot, heat flows leaving or entering the room towards other585

rooms are not taken into account which leads to constraint violations as the MPC tends to operate the
temperatures near the bounds. The total thermal discomfort is 7.15 Kh. The convector is operated in a
reactive and responsive way similar to the distributed MPC. However, the global CCA control input shows
a less smooth control compared to the distributed approach displaying numerous sharp peaks which results
in a control that is not appropriate for the inert CCA. The behavior is caused by the uncoordinated CCA590

control and averaging of all optimized CCA local control inputs before the simulation. Apart from this, the
CCA trajectory hits the maximum bound during hours 60, 80–84 and 104–108. Neglecting any coupling in
the disturbance quantities and cost function the decentralized MPC completely focuses on the minimization
of local energy consumption resulting in an amount of 686 558 kJ, which is nevertheless slightly higher than
for the distributed MPC due to the unconsidered inter-zone heat flows. Fig. 10 confirms the existence595

of high unconsidered inter-zone heat flows leading to a substantial mismatch between the optimized and
simulated temperature trajectories for the exemplary room 3. The computation time of the decentralized
MPC is 13 772 s with a computational time ratio of 0.032.

In Fig. 11 the simulation results for the centralized MPC variant are presented applying the same
BLT decomposition as for the distributed and decentralized MPC. During the heating period, the room600

temperatures are operated more distant from the lower comfort bound compared to the distributed and
decentralized approach leading to higher energy consumption of 818 130 kJ. Due to the high model complexity
and number of optimization variables the optimization solver gets stuck in suboptimal local minima where
the cost function result is significantly worse than for the distributed MPC. The local minima are further
characterized by leaving the comfort bounds to a higher extent compared to the distributed MPC which605

results in a thermal discomfort amount of 6.18 Kh. In the ”Heating power consumption” subplot it can be
observed that, in contrast to the distributed and decentralized MPC, during the period of solar and internal
gains there is still a high amount of consumed heating power. The mass flows supplied to the convector and
CCA are rarely reduced to near zero and they are on a similar level near the middle of the control range for
most of the prediction horizon. Additionally, the control of the central CCA mass flow contains some sharp610

peaks inducing an inapt CCA system control. The shading control shows a similar behavior compared to
the CCA and convector mass flows and the control inputs are operated on a similar level in the midst of
the control range for most of the time horizon. The computation time is 292 213 s with a computational
time ratio of 0.676. Thus, the approach is not scalable and qualified for the real-time application of larger
buildings.615

The KPIs for all control concepts are summarized in Table 1. Compared to the decentralized variant, the
energy consumption of the distributed variant is decreased by 0.4 % and the computation time is increased
by 52.0 %. Thermal discomfort for the distributed MPC is significantly reduced by 57.6 % compared to
the decentralized approach. Compared to the centralized optimization, the energy consumption for the
distributed MPC is reduced by 16.4 % and discomfort is reduced by 51.0 %. The computation time is620

decreased substantially by 92.8 %.
To conclude, the application of the decentralized MPC results in an unacceptable amount of thermal

discomfort and inappropriate CCA control whereas the centralized MPC leads to unacceptable high compu-
tation times, which renders the two variants as non-suitable approaches for a scalable, multi-zone building
MPC. The proposed distributed MPC outperforms both approaches showing good convergence results for625
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Figure 9: Simulation results of the decentralized MPC

Figure 10: Optimized and simulated room temperature trajectories of room 3 for the decentralized MPC

21



Figure 11: Simulation results of the centralized MPC
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the ADMM and an adequate CCA control and is able to reduce thermal discomfort and computation time
considerably while preserving high energy-efficiency. The case study has proven the potential as a suitable
approach for the real-time MPC application for large-scale, multi-zone buildings.

Energy
consumption in kJ

Thermal discomfort
in Kh

Computation time in s/
computational time
ratio

Distributed
approach

683 668 3.03 20 928/ 0.048

Decentralized
approach

686 558 7.15 13 772/ 0.032

Centralized
approach

818 130 6.18 292 213/ 0.676

Table 1: Comparison of KPIs for the different control approaches

5. Conclusion and outlook

In this paper, a distributed gradient-based MPC approach for large-scale, multi-zone building energy630

systems based on nonlinear Modelica controller models is presented. The proposed parallel and iterative
approach addresses both thermal (thermal transfer between zones through walls and doors) and hydraulic
coupling among different building zones (induced by a shared, central HVAC system). For considering
thermal coupling, an uncooperative Nash optimization approach is chosen and for integrating hydraulic
coupling, a cooperative approach based on a consensus ADMM is applied. Thermal coupling through635

doors is taken into account based on a data-driven, simulation-validated model, which calculates the air
exchange between zones based on the room temperature difference. The local subsystem optimizations are
coordinated and monitored by a central coordinator, which supports plug-n-play mechanisms based on the
specified neighbor assignments.

In a simulative case study, the distributed MPC approach is applied to a nonlinear six-room-building640

Modelica model with detailed HVAC components, which accounts for both thermal and hydraulic TABS/
CCA coupling. The proposed control strategy is compared to centralized and decentralized MPC variants
in terms of the KPIs energy consumption, thermal discomfort and computation time. The simulation
results reveal that the distributed MPC approach outperforms both the centralized and decentralized variant
reducing thermal discomfort by 57.6 % compared to the decentralized variant and reducing computation645

time by 92.8 % compared to the centralized variant. The consensus ADMM applied to the non-convex
problem shows good convergence results yielding a low RMSE between the global CCA control input and
the local room copies. The case study demonstrates the scalability and suitability of the distributed MPC
approach for the control of large-scale buildings where the rooms are hydraulically coupled by TABS. It
preserves a high energy efficiency and suits a real-time implementation being 21 times faster than real-time650

in the six-room use case. Applying a BLT decomposition method the number of algebraic variables of the
subproblems can be reduced significantly leading to a substantial decrease in computation time.

Future planned extensions and improvements of the framework include an up-scaling to larger multi-
zone buildings integrating further coupling constraints (e.g. maximum bounds for shared components),
integration of the energy supply system, inclusion of integer decision variables, model calibration based on655

measurement data and the practical implementation of the approach.
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